내용
사진
사진 업로드
DSS Images Other Images
관련 글
Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| Chromospherically Active Stars. XVIII. Sorting Out the Variability of HD 95559 and Gliese 410=DS Leonis We have obtained spectroscopy and photometry of HD 95559 and photometryof Gliese 410=DS Leonis. HD 95559 consists of a pair of essentiallyidentical K1 V stars, whose orbital period we refine to1.52599775+/-0.00000104 days. The system is photometrically variablewith a mean period of 1.5264+/-0.0003 days. Despite minimum massesgreater than 0.8 Msolar for each component, a search foreclipses proved negative. The lithium abundances of the components of HD95559 indicate that the system is younger than the Hyades cluster, andits components may even have just arrived on the zero-age main sequence.Gl 410=DS Leo is also a photometric variable, but we conclude that thephotometric period originally ascribed to this star is an alias of theperiod for HD 95559. We find periods of 13.99 and 15.71 days for thefirst and second seasons of observation, respectively. Both HD 95559 andGl 410 are BY Draconis variables, with variability resulting from therotational modulation of starspots. We also find HR 4269, the check starfor our photometry of HD 95559 and Gl 410, to be a variable K4 III witha photometric period of 26.4 days in the first season of observation andperiods of 13.96 and 83 days in the second. We suggest that itsvariability mechanism is radial pulsation, the same as that for M giantsemiregular variables.
| Modeling Visual Photometry I: Preliminary Determination of Visual Bandpass This paper addresses the issue of spectral sensitivity as part of theoverall visual model. A mathematical theory and observational method arepresented for the determination of color coefficient with error term foran individual observer.
|
새 글 등록
관련 링크
새 링크 등록
다음 그룹에 속해있음:
|
관측 및 측정 데이터
천체목록:
|