Home     Per cominciare     Sopravvivere Nell'Universo    
Inhabited Sky
    News@Sky     Astro Foto     La collezione     Forum     Blog New!     FAQ     Stampa     Login  

HD 40979


Contenuti

Immagini

Carica la tua immagine

DSS Images   Other Images


Articoli relazionati

Parent stars of extrasolar planets - VIII. Chemical abundances for 18 elements in 31 stars
We present the results of detailed spectroscopic abundance analyses for18 elements in 31 nearby stars with planets (SWPs). The resultingabundances are combined with other similar studies of nearby SWPs andcompared to a sample of nearby stars without detected planets. We findsome evidence for abundance differences between these two samples forAl, Si and Ti. Some of our results are in conflict with a recent studyof SWPs in the SPOCS data base. We encourage continued study of theabundance patterns of SWPs to resolve these discrepancies.

The multiplicity of exoplanet host stars. Spectroscopic confirmation of the companions GJ 3021 B and HD 27442 B, one new planet host triple-star system, and global statistics
Aims.We present new results from our ongoing multiplicity study ofexoplanet host stars and present a list of 29 confirmed planet hostmultiple-star systems. Furthermore, we discuss the properties of thesestellar systems and compare the properties of exoplanets detected inthese systems with those of planets orbiting single stars. Methods: Weused direct imaging to search for wide stellar and substellar companionsof exoplanet host stars. With infrared and/or optical spectroscopy, wedetermined the spectral properties of the newly-found co-movingcompanions. Results: We obtained infrared H- and K-band spectra of theco-moving companion GJ 3021 B. The infrared spectra and the apparentH-band photometry of the companion is consistent with an M3-M5 dwarf atthe distance of the exoplanet host star. HD 40979 AB is a wide planethost stellar system, with a separation of ~ 6400 AU. The companion tothe exoplanet host star turned out to be a close stellar pair with aprojected separation of ~130 AU, hence, this system is a new member ofthose rare planet host triple-star systems of which only three othersystems are presently known. HD 27442 AB is a wide binary system listedin the Washington Double Star Catalogue, whose common proper motion wasrecently confirmed. This system is composed of the subgiant HD 27442 Ahosting the exoplanet, and its faint companion HD 27442 B. The visibleand infrared J-, H-, and K_S-band photometry of HD 27442 B at thedistance of the primary star shows that the companion is probably awhite dwarf. Our multi-epochs SofI imaging observations confirm thisresult and even refine the suggested physical characteristics of HD27442 B. This companion should be a relatively young, hot white dwarfwith an effective temperature of ~14 400 K, and cooling age of ~220 Myr.Finally, we could unambiguously confirm the white dwarf nature of HD27442 B with follow-up optical and infrared spectroscopy. The spectra ofthe companion show Hydrogen absorption features of the Balmer, Paschen,and Bracket series. With its subgiant primary and the white-dwarfcompanion, the HD 27442 AB system is the most evolved planet hoststellar system known today. The mass-period and eccentricity-periodcorrelation of planets around single stars and those residing inmultiple-star systems seem different for the short-period planets. Thedistribution functions of planet orbital elements (P, e) are identical,while the mass-distribution (m sin(i)) exhibits one difference. Whileboth planet populations exhibit a peak in their mass-distribution atabout 1 M_Jup, the frequency of more massive planets continuallydecreases in single-star systems, whereas the mass-distribution ofplanets residing in multiple-star systems exhibits a further peak atabout 4 M_Jup. This indicates that the mass-distributions of the twoplanet populations might differ in the intermediate mass-range between 2and 6 M_Jup.Based on observations obtained on La Silla in ESO programs 70.C-0116(A),71.C-0140(A), 73.C-0103(A), and on Paranal in ESO runs 074.C-0144(B),074.C-0144(C), 073.C-0370(A), on Mauna Kea in UKIRT program U/02A/16, aswell as at the Munich LMU University Observatory on Mount Wendelstein.

Planetary Formation Scenarios Revisited: Core-Accretion versus Disk Instability
The core-accretion and disk instability models have so far been used toexplain planetary formation. These models have different conditions,such as planet mass, disk mass, and metallicity for formation of gasgiants. The core-accretion model has a metallicity condition([Fe/H]>-1.17 in the case of G-type stars), and the mass of planetsformed is less than 6 times that of the Jupiter mass MJ. Onthe other hand, the disk instability model does not have the metallicitycondition, but requires the disk to be 15 times more massive than theminimum mass solar nebulae model. The mass of planets formed is morethan 2 MJ. These results are compared to the 161 detectedplanets for each spectral type of the central stars. The results showthat 90% of the detected planets are consistent with the core-accretionmodel regardless of the spectral type. The remaining 10% are not in theregion explained by the core-accretion model, but are explained by thedisk instability model. We derived the metallicity dependence of theformation probability of gas giants for the core-accretion model.Comparing the result with the observed fraction having gas giants, theyare found to be consistent. On the other hand, the observation cannot beexplained by the disk instability model, because the condition for gasgiant formation is independent of the metallicity. Consequently, most ofplanets detected so far are thought to have been formed by thecore-accretion process, and the rest by the disk instability process.

The frequency of planets in multiple systems
Context: The frequency of planets in binaries is an important issue inthe field of extrasolar planet studies, because of its relevance inestimating of the global planet population of our Galaxy and the cluesit can give to our understanding of planet formation and evolution.However, only preliminary estimates are available in the literature. Aims: We analyze and compare the frequency of planets in multiplesystems to the frequency of planets orbiting single stars. We also tryto highlight possible connections between the frequency of planets andthe orbital parameters of the binaries (such as the periastron and massratio.) Methods: A literature search was performed for binariesand multiple systems among the stars of the sample with uniform planetdetectability defined by Fischer & Valenti (2005, ApJ, 622, 1102),and 202 of the 850 stars of the sample turned out to be binaries,allowing a statistical comparison of the frequency of planets inbinaries and single stars and a study of the run of the planet frequencyas a function of the binary separation. Results: We found that theglobal frequency of planets in the binaries of the sample is notstatistically different from that of planets in single stars. Evenconservatively taking the probable incompleteness of binary detection inour sample into account, we estimate that the frequency of planets inbinaries can be no more than a factor of three lower than that ofplanets in single stars. There is no significant dependence of planetfrequency on the binary separation, except for a lower value offrequency for close binaries. However, this is probably not as low asrequired to explain the presence of planets in close binaries only asthe result of modifications of the binary orbit after the planetformation. Table 8 and Appendix A are only available in electronic form athttp://www.aanda.org

Properties of planets in binary systems. The role of binary separation
Aims.The statistical properties of planets in binaries wereinvestigated. Any difference to planets orbiting single stars can shedlight on the formation and evolution of planetary systems. As planetswere found around components of binaries with very different separationand mass ratio, it is particularly important to study thecharacteristics of planets as a function of the effective gravitationalinfluence of the companion. Methods: .A compilation of planets inbinary systems was made; a search for companions orbiting stars recentlyshown to host planets was performed, resulting in the addition of twofurther binary planet hosts (HD 20782 and HD 109749). The probableoriginal properties of the three binary planet hosts with white dwarfscompanions were also investigated. Using this updated sample of planetsin binaries we performed a statistical analysis of the distributions ofplanet mass, period, and eccentricity, fraction of multiplanet systems,and stellar metallicity for planets orbiting components of tight andwide binaries and single stars. Results: .The only highlysignificant difference revealed by our analysis concerns the massdistribution of short-period planets. Massive planets in short periodorbits are found in most cases around the components of rather tightbinaries. The properties of exoplanets orbiting the components of widebinaries are compatible with those of planets orbiting single stars,except for a possible greater abundance of high-eccentricity planets.The previously suggested lack of massive planets with P>100 days inbinaries is not confirmed. Conclusions: .We conclude that thepresence of a stellar companion with separation smaller than 100-300 AUis able to modify the formation and/or migration and/or the dynamicalevolution history of giant planets while wide companions play a morelimited role.Table 1 and Appendices A-C are only available in electronic form athttp://www.aanda.org

Stable satellites around extrasolar giant planets
In this work, we study the stability of hypothetical satellites ofextrasolar planets. Through numerical simulations of the restrictedelliptic three-body problem we found the borders of the stable regionsaround the secondary body. From the empirical results, we derivedanalytical expressions of the critical semimajor axis beyond which thesatellites would not remain stable. The expressions are given as afunction of the eccentricities of the planet, eP, and of thesatellite, esat. In the case of prograde satellites, thecritical semimajor axis, in the units of Hill's radius, is given byaE ~ 0.4895 (1.0000 - 1.0305eP -0.2738esat). In the case of retrograde satellites, it isgiven by aE ~ 0.9309 (1.0000 - 1.0764eP -0.9812esat). We also computed the satellite stability region(aE) for a set of extrasolar planets. The results indicatethat extrasolar planets in the habitable zone could harbour theEarth-like satellites.

Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties
Habitable planets are likely to be broadly Earth-like in composition,mass, and size. Masses are likely to be within a factor of a few of theEarth's mass. Currently, we do not have sufficiently sensitivetechniques to detect Earth-mass planets, except in rare circumstances.It is thus necessary to model the known exoplanetary systems. Inparticular, we need to establish whether Earth-mass planets could bepresent in the classical habitable zone (HZ) or whether the giantplanets that we know to be present would have gravitationally ejectedEarth-mass planets or prevented their formation. We have answered thisquestion by applying computer models to the 152 exoplanetary systemsknown by 2006 April 18 that are sufficiently well characterized for ouranalysis. For systems in which there is a giant planet, inside the HZ,which must have arrived there by migration, there are two cases: (1)where the migration of the giant planet across the HZ has not ruled outthe existence of Earth-mass planets in the HZ; and (2) where themigration has ruled out existence. For each case, we have determined theproportion of the systems that could contain habitable Earth-massplanets today, and the proportion for which this has been the case forat least the past 1000 Myr (excluding any early heavy bombardment). Forcase 1 we get 60% and 50%, respectively, and for case 2 we get 7% and7%, respectively.

Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.

Catalog of Nearby Exoplanets
We present a catalog of nearby exoplanets. It contains the 172 knownlow-mass companions with orbits established through radial velocity andtransit measurements around stars within 200 pc. We include fivepreviously unpublished exoplanets orbiting the stars HD 11964, HD 66428,HD 99109, HD 107148, and HD 164922. We update orbits for 83 additionalexoplanets, including many whose orbits have not been revised sincetheir announcement, and include radial velocity time series from theLick, Keck, and Anglo-Australian Observatory planet searches. Both thesenew and previously published velocities are more precise here due toimprovements in our data reduction pipeline, which we applied toarchival spectra. We present a brief summary of the global properties ofthe known exoplanets, including their distributions of orbital semimajoraxis, minimum mass, and orbital eccentricity.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. The Keck Observatory was made possible by thegenerous financial support of the W. M. Keck Foundation.

Dynamical Stability and Habitability of the γ Cephei Binary-Planetary System
It has been suggested that the long-lived residual radial velocityvariations observed in the precision radial velocity measurements of theprimary of γ Cephei (HR 8974, HD 222404, HIP 116727) are likelydue to a Jupiter-like planet orbiting this star. In this paper, thedynamics of this planet is studied, and the possibility of the existenceof a terrestrial planet around its central star is discussed.Simulations, which have been carried out for different values of theeccentricity and semimajor axis of the binary, as well as the orbitalinclination of its Jupiter-like planet, expand on previous studies ofthis system and indicate that, for the values of the binary eccentricitysmaller than 0.5, and for all values of the orbital inclination of theJupiter-like planet ranging from 0° to 40°, the orbit of thisplanet is stable. For larger values of the binary eccentricity, thesystem becomes gradually unstable. Integrations also indicate that,within this range of orbital parameters, a terrestrial planet, such asan Earth-like object, can have a long-term stable orbit only atdistances of 0.3-0.8 AU from the primary star. The habitable zone of theprimary, at a range of approximately 3.05-3.7 AU, is, however, unstable.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Chemical Composition of the Planet-harboring Star TrES-1
We present a detailed chemical abundance analysis of the parent star ofthe transiting extrasolar planet TrES-1. Based on high-resolution KeckHIRES and Hobby-Eberly Telescope HRS spectra, we have determinedabundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc,Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting averageabundance of <[X/H]>=-0.02+/-0.06 is in good agreement withinitial estimates of solar metallicity based on iron. We compare theelemental abundances of TrES-1 with those of the sample of stars withplanets, searching for possible chemical abundance anomalies. TrES-1appears not to be chemically peculiar in any measurable way. Weinvestigate possible signs of selective accretion of refractory elementsin TrES-1 and other stars with planets and find no statisticallysignificant trends of metallicity [X/H] with condensation temperatureTc. We use published abundances and kinematic information forthe sample of planet-hosting stars (including TrES-1) and severalstatistical indicators to provide an updated classification in terms oftheir likelihood to belong to either the thin disk or the thick disk ofthe Milky Way. TrES-1 is found to be very likely a member of thethin-disk population. By comparing α-element abundances of planethosts and a large control sample of field stars, we also find thatmetal-rich ([Fe/H]>~0.0) stars with planets appear to besystematically underabundant in [α/Fe] by ~0.1 dex with respect tocomparison field stars. The reason for this signature is unclear, butsystematic differences in the analysis procedures adopted by differentgroups cannot be ruled out.

Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?
We present the [ X/H] trends as a function of the elemental condensationtemperature TC in 88 planet host stars and in avolume-limited comparison sample of 33 dwarfs without detected planetarycompanions. We gathered homogeneous abundance results for many volatileand refractory elements spanning a wide range of T_C, from a few dozento several hundred kelvin. We investigate possible anomalous trends ofplanet hosts with respect to comparison sample stars to detect evidenceof possible pollution events. No significant differences are found inthe behaviour of stars with and without planets. This is consistent witha "primordial" origin of the metal excess in planet host stars. However,a subgroup of 5 planet host and 1 comparison sample stars stands out ashaving particularly high [ X/H] vs. TC slopes.

Abundances of refractory elements in the atmospheres of stars with extrasolar planets
Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.

A massive planet to the young disc star HD 81040
We report the discovery of a massive planetary companion orbiting theyoung disc star HD 81040. Based on five years of precise radial-velocitymeasurements with the HIRES and ELODIE spectrographs, we derive aspectroscopic orbit with a period P =1001.0 days and eccentricity e =0.53. The inferred minimum mass for the companion of m_2 sin i = 6.86M_Jup places it in the high-mass tail of the extrasolar planet massdistribution. From the ELODIE spectra we derive a Lithium abundance oflogɛ(Li) = 1.90, and from the HIRES spectra of the cores of theCa II H and K lines we derive an activity index of < log R'_HK> =-4.48, suggesting an age of about 0.8 Gyr. The radial-velocity residualsexhibit a scatter significantly larger than the typical internalmeasurement precision of the instruments. We attribute this excessvelocity jitter to activity on the surface of the moderately young hoststar. However, the amplitude of the jitter is much too small and theexpected period of rotation is much too short to explain the observedorbital motion, which we conclude is due to a massive planetarycompanion.

Can stellar wobble in triple systems mimic a planet?
The first extrasolar planets were detected by the measurement of thewobble of the parent star. This wobble leads to the periodic modulationof three observables: the radial velocity, the position on the sky andthe time of arrival of periodic signals. We show that the same wobble,and therefore the same modulation of the three observables, can be dueto the presence of a more distant binary stellar companion. Thus, the observation of the wobble does not, by itself, constitute a proof of aplanet detection. In particular, astrometric confirmation of a wobbledoes not necessarily provide a sufficient proof of the existence of aplanet candidate detected by radial velocity. Additional conditions,which we discuss here, must be fulfilled. We investigate the observedwobble for the planet candidates already detected and we find that, foreach case, a wobble due to a binary stellar companion can beexcluded.
However, for apparent Saturn-like planets in wideorbits, there may be an ambiguity in future detections, especially inspaceborne astrometric missions. We conclude that, in some cases, adefinitive proof of the presence of a planet requires furtherobservations such as direct imaging.

Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators
We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.

An Analysis of the Condensation Temperature of Elements of Extrasolar Planetary Systems
Using high signal-to-noise ratio spectra of extrasolar planet-hostingstars, we obtained the atmospheric parameters, accurate metallicitiesand the differential abundance for 15 elements (C, O, Na, Mg, Al, Si, S,Ca, Sc, Ti, V, Cr, Mn, Ni and Ba). In a search for possible signaturesof metal-rich material accreting onto the parent stars, we found that ,for a given element, there is no significant trend of increasing [X/H]with increasing condensation temperature Tc. In our sample ofplanet-harboring stars, the volatile and refractory elements behavesimilarly, and we can not confirm if there exists any significantdependence on the condensation temperature Tc.

A link between the semimajor axis of extrasolar gas giant planets and stellar metallicity
The fact that most extrasolar planets found to date are orbitingmetal-rich stars lends credence to the core accretion mechanism of gasgiant planet formation over its competitor, the disc instabilitymechanism. However, the core accretion mechanism is not refined to thepoint of explaining orbital parameters such as the unexpected semimajoraxes and eccentricities. We propose a model that correlates themetallicity of the host star with the original semimajor axis of itsmost massive planet, prior to migration, assuming that the coreaccretion scenario governs giant gas planet formation. The modelpredicts that the optimum regions for planetary formation shift inwardsas stellar metallicity decreases, providing an explanation for theobserved absence of long-period planets in metal-poor stars. We compareour predictions with the available data on extrasolar planets for starswith masses similar to the mass of the Sun. A fitting procedure producesan estimate of what we define as the zero-age planetary orbit (ZAPO)curve as a function of the metallicity of the star. The model hints thatthe lack of planets circling metal-poor stars may be partly caused by anenhanced destruction probability during the migration process, becausethe planets lie initially closer to their central star.

On the ages of exoplanet host stars
We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.

Chemical abundances of 22 extrasolar planet host stars*
We present observations of 22 extrasolar planet host stars and derivetheir stellar parameters. With the high signal-to-noise ratio spectra,we acquire accurate metallicities and the differential abundances for 15other elements and we discuss the relation between the abundance ratioand the metallicity. These sample stars are metal-rich relative to theSun, covering the range from -0.04 to 0.54 dex with the average [Fe/H]value of 0.15 +/- 0.12 dex, except for HD 37124, which has [Fe/H]=-0.45.The stars with planets show a slight overabundance pattern for [C/Fe]and [Mg/Fe], but [Na/Fe], [Al/Fe], [Si/Fe], [Ti/Fe], [Cr/Fe], [Sc/Fe],[V/Fe], [Ni/Fe] and [Ba/Fe] are approximately solar in the sample stars.These stars also show slight underabundances for [O/Fe], [Ca/Fe] and[Mn/Fe]. The sulphur displays enhanced values, ranging from -0.10 to0.40 through the sample stars. These results are used to investigate theconnection between giant planets and high metallicity and to probe theinfluence of the process on the other elements.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Kinematics, ages and metallicities for F- and G-type stars in the solar neighbourhood
A new metallicity distribution and an age-metallicity relation arepresented for 437 nearby F and G turn-off and sub-giant stars selectedfrom radial velocity data of Nidever et al. Photometric metallicitiesare derived from uvby- Hβ photometry, and the stellar ages from theisochrones of Bergbusch & VandenBerg as transformed to uvbyphotometry using the methods of Clem et al.The X (stellar population) criterion of Schuster et al., which combinesboth kinematic and metallicity information, provides 22 thick-discstars. σW= 32 +/- 5 km s-1,= 154 +/- 6 km s-1 and<[M/H]>=-0.55 +/- 0.03 dex for these thick-disc stars, which is inagreement with values from previous studies of the thick disc.α-element abundances which are available for some of thesethick-disc stars show the typical α-element signatures of thethick disc, supporting the classification procedure based on the Xcriterion.Both the scatter in metallicity at a given age and the presence of old,metal-rich stars in the age-metallicity relation make it difficult todecide whether or not an age-metallicity relation exists for the olderthin-disc stars. For ages greater than 3 Gyr, our results agree with theother recent studies that there is almost no correlation between age andmetallicity, Δ([M/Fe])/Δ(age) =-0.01 +/- 0.005 dexGyr-1. For the 22 thick-disc stars there is a range in agesof 7-8 Gyr, but again almost no correlation between age and metallicity.For the subset of main-sequence stars with extra-solar planets, theage-metallicity relation is very similar to that of the total sample,very flat, the main difference being that these stars are mostlymetal-rich, [M/H]>~-0.2 dex. However, two of these stars have[M/H]~-0.6 dex and have been classified as thick-disc stars. As for thetotal sample, the range in ages for these stars with extra-solarplanetary systems is considerable with a nearly uniform distributionover 3 <~ age <~ 13 Gyr.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Abundances of Na, Mg and Al in stars with giant planets
We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.

Spectroscopic metallicities for planet-host stars: Extending the samples
We present stellar parameters and metallicities for 29 planet-hoststars, as well as for a large volume-limited sample of 53 stars notknown to be orbited by any planetary-mass companion. These stars add tothe results presented in our previous series of papers, providing twolarge and uniform samples of 119 planet-hosts and 94“single” stars with accurate stellar parameters and [Fe/H]estimates. The analysis of the results further confirms that stars withplanets are metal-rich when compared with average field dwarfs.Important biases that may compromise future studies are also discussed.Finally, we compare the metallicity distributions for singleplanet-hosts and planet-hosts in multiple stellar systems. The resultsshow that a small difference cannot be excluded, in the sense that thelatter sample is slighly overmetallic. However, more data are needed toconfirm this correlation.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Prospects for Habitable ``Earths'' in Known Exoplanetary Systems
We have examined whether putative Earth-mass planets could remainconfined to the habitable zones (HZs) of the 111 exoplanetary systemsconfirmed by 2004 August. We find that in about half of these systemsthere could be confinement for at least the past 1000 Myr, though insome cases only in variously restricted regions of the HZ. The HZmigrates outward during the main-sequence lifetime, and we find that inabout two-thirds of the systems an Earth-mass planet could be confinedto the HZ for at least 1000 Myr sometime during the main-sequencelifetime. Clearly, these systems should be high on the target list forexploration for terrestrial planets. We have reached our conclusions bydetailed investigations of seven systems, which has resulted in anestimate of the distance from the giant planet within which orbitalstability is unlikely for an Earth-mass planet. This distance is givenby nRH, where RH is the Hill radius of the giantplanet and n is a multiplier that depends on the giant's orbitaleccentricity and on whether the Earth-mass planet is interior orexterior to the giant planet. We have estimated n for each of the sevensystems by launching Earth-mass planets in various orbits and followingtheir fate with a hybrid orbital integrator. We have then evaluated thehabitability of the other exoplanetary systems using nRHderived from the giant's orbital eccentricity without carrying outtime-consuming orbital integrations. A stellar evolution model has beenused to obtain the HZs throughout the main-sequence lifetime.

Sottometti un nuovo articolo


Link relazionati

  • - Nessun link trovato -
Sottometti un nuovo link


Membro dei seguenti gruppi:


Osservazione e dati astrometrici

Costellazione:Auriga
Ascensione retta:06h04m29.94s
Declinazione:+44°15'37.6"
Magnitudine apparente:6.744
Distanza:33.333 parsec
Moto proprio RA:97
Moto proprio Dec:-153.7
B-T magnitude:7.408
V-T magnitude:6.799

Cataloghi e designazioni:
Nomi esatti   (Edit)
HD 1989HD 40979
TYCHO-2 2000TYC 2937-1747-1
USNO-A2.0USNO-A2 1275-05873441
HIPHIP 28767

→ Richiesta di ulteriori cataloghi da VizieR