Contents
Images
Upload your image
DSS Images Other Images
Related articles
CHARM2: An updated Catalog of High Angular Resolution Measurements We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773
| Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}
| Hipparcos red stars in the HpV_T2 and V I_C systems For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997
| CHARM: A Catalog of High Angular Resolution Measurements The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.
| Rapidly oscillating M giant stars? The Hipparcos mission discovered a few dozen M giant stars with periodsP shorter than 10d. Similar stars may be found in other large data basesof new variables (e.g., OGLE). The three possible sources of themagnitude variations - pulsation, starspots and ellipsoidal deformation- are discussed in general terms. The parallaxes and V-I colour indicesare used to calculate radii and temperatures for all M giant variableswith P<100d. Masses are estimated from the positions of the stars ina Hertzsprung-Russell (HR) diagram, using evolutionary tracks. Usingthese data, it is shown that starspots can be ruled out as a variabilitymechanism in almost all cases, and ellipsoidal variations in about halfof the stars. Pulsation in very high-overtone modes appears to be theonly viable explanation for the stars with P<10d. Many of the starsmay be multiperiodic. IRAS data are used to deduce information aboutreddening and circumstellar dust. The apparently low level of mass-loss,as well as the kinematics and the spatial distribution of the stars,indicates that they are from a relatively young (i.e., thin disc) giantstar population.
| Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra We start from our six absolutely calibrated continuous stellar spectrafrom 1.2 to 35 μm for K0, K1.5, K3, K5, and M0 giants. These wereconstructed as far as possible from actual observed spectral fragmentstaken from the ground, the Kuiper Airborne Observatory, and the IRAS LowResolution Spectrometer, and all have a common calibration pedigree.From these we spawn 422 calibrated ``spectral templates'' for stars withspectral types in the ranges G9.5-K3.5 III and K4.5-M0.5 III. Wenormalize each template by photometry for the individual stars usingpublished and/or newly secured near- and mid-infrared photometryobtained through fully characterized, absolutely calibrated,combinations of filter passband, detector radiance response, and meanterrestrial atmospheric transmission. These templates continue ourongoing effort to provide an all-sky network of absolutely calibrated,spectrally continuous, stellar standards for general infrared usage, allwith a common, traceable calibration heritage. The wavelength coverageis ideal for calibration of many existing and proposed ground-based,airborne, and satellite sensors, particularly low- tomoderate-resolution spectrometers. We analyze the statistics of probableuncertainties, in the normalization of these templates to actualphotometry, that quantify the confidence with which we can assert thatthese templates truly represent the individual stars. Each calibratedtemplate provides an angular diameter for that star. These radiometricangular diameters compare very favorably with those directly observedacross the range from 1.6 to 21 mas.
| The 74th Special Name-list of Variable Stars We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Radial Velocities of 713 Stars in Four Fields of 4DEG by 4DEG - Measurements by the 620-MM Objective Prism of the Observatoire de Haute-Provence Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1981A&AS...43..297F&db_key=AST
| Catalog of Indidual Radial Velocities, 0h-12h, Measured by Astronomers of the Mount Wilson Observatory Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...19..387A&db_key=AST
| Radial Velocities of 360 Stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1952ApJ...115..157W&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Triangle |
Right ascension: | 02h17m57.33s |
Declination: | +29°00'26.1" |
Apparent magnitude: | 6.698 |
Distance: | 505.051 parsecs |
Proper motion RA: | 21 |
Proper motion Dec: | -9.3 |
B-T magnitude: | 8.908 |
V-T magnitude: | 6.881 |
Catalogs and designations:
|