Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 152408


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Obscured clusters. I. GLIMPSE 30 - A young Milky Way star cluster hosting Wolf-Rayet stars
Context: Young massive clusters are usually deeply embedded in dust andgas. They represent excellent astrophysical laboratories for the studyof massive stars. Clusters with Wolf-Rayet (WR) stars are of specialimportance, since this enables us to study a coeval WR population at auniform metallicity and known age. Aims: We started a long-term projectto search the inner Milky Way for hidden star clusters and to study themin detail. GLIMPSE 30 (G30) is one of these clusters. It is situatednear the Galactic plane (l=298.756°, b=-0.408°) and we determineits physical parameters and investigate its high-mass stellar contentespecially WR stars. Methods: Our analysis is based on SOFI/NTTJ_SHKS imaging and low resolution (R˜2000) spectroscopyof the brightest cluster members in the K atmospheric window. For theage determination we applied isochrone fits for MS and Pre-MS stars. Wederived stellar parameters of the WR stars candidates using a fullnonLTE modeling of the observed spectra. Results: Using a variety oftechniques we found that G30 is very young cluster, with age t ≈ 4Myr. The cluster is located in the Carina spiral arm, it is deeplyembedded in dust and suffers reddening of AV ˜10.5± 1.1 mag. The distance to the object is d=7.2±0.9kpc. The mass of the cluster members down to 2.35 M_ȯ is 1600M_ȯ. The cluster's MF for the mass range of 5.6 to 31.6 {M_ȯ}shows a slope of Γ=-1.01± 0.03. The total mass of thecluster obtained by this MF down to 1 M_ȯ is about 3 ×103 M_ȯ. The spectral analysis and the models allow usto conclude that at least one Ofpe/WN and two WR stars can be found inG30. The WR stars are of the WN6-7 hydrogen rich type with progenitormasses of more than 60 M_ȯ. Conclusions: G30 is a new member ofthe family of young Galactic clusters hosting WR stars. It is a factorof two to three less massive than some of the youngest super-massivestar clusters like Arches, Quintuplet and the Central cluster and istheir smaller analog.Based on observations collected with the New Technology Telescope of theESO within observing program 77.D-0089.

Testing the predicted mass-loss bi-stability jump at radio wavelengths
Context: Massive stars play a dominant role in the Universe, but one ofthe main drivers for their evolution, their mass loss, remains poorlyunderstood. Aims: In this study, we test the theoretically predictedmass-loss behaviour as a function of stellar effective temperatureacross the so-called “bi-stability” jump. Methods: Weobserve OB supergiants in the spectral range O8-B3 at radio wavelengthsto measure their thermal radio flux densities, and complement thesemeasurements with data from the literature. We derive the radiomass-loss rates and wind efficiencies, and compare our results withHα mass-loss rates and predictions based on radiation-driven windmodels. Results: The wind efficiency shows the possible presence of alocal maximum around an effective temperature of 21 000 K - inqualitative agreement with predictions. Furthermore, we find that theabsolute values of the radio mass-loss rates show good agreement withempirical Hα rates derived assuming homogeneous winds - for thespectral range under consideration. However, the empirical mass-lossrates are larger (by a factor of a few) than the predicted rates fromradiation-driven wind theory for objects above the bi-stability jump(BSJ) temperature, whilst they are smaller (by a factor of a few) forstars below the BSJ temperature. The reason for these discrepanciesremains as yet unresolved. A new wind momenta-luminosity relation (WLR)for O8-B0 stars has been derived using the radio observations. Thevalidity of the WLR as a function of the fitting parameter related tothe force multiplier α_eff (Kudritzki & Puls, 2000, ARA&A,629) is discussed. Conclusions: Our most interesting finding is thatthe qualitative behaviour of the empirical wind efficiencies witheffective temperature is in line with the predicted behaviour, and thispresents the first hint of empirical evidence for the predictedmass-loss bi-stability jump. However, a larger sample of stars aroundthe BSJ needs to be observed to confirm this finding.

Spectral atlas of massive stars around He I 10 830 Å
We present a digital atlas of peculiar, high-luminosity massive stars inthe near-infrared region (10 470-11 000 Å) at medium resolution(R≃7000). The spectra are centered around He I 10 830 Å,which is formed in the wind of those stars, and is a crucial line toobtain their physical parameters. The instrumental configuration alsosampled a rich variety of emission lines of Fe II, Mg II, C I, N I, andPa γ. Secure identifications for most spectral lines are given,based on synthetic atmosphere models calculated by our group. We alsopropose that two unidentified absorption features have interstellarand/or circumstellar origin. For the strongest one (10 780 Å) anempirical calibration between E(B-V) and equivalent width is provided.The atlas displays the spectra of massive stars organized in fourcategories, namely Be stars, OBA Iape (or luminous blue variables, LBVcandidates and ex/dormant LBVs), OB supergiants and Wolf-Rayet stars.For comparison, the photospheric spectra of non emission-line stars arepresented. Selected LBVs were observed in different epochs from 2001 to2004, and their spectral variability reveals that some stars, such asη Car, AG Car and HR Car, suffered dramatic spectroscopic changesduring this time interval.Based on observations made at Observatório do Pico dos Dias/LNA(Brazil). Figures 5 to 18 are only available in electronic form athttp://www.aanda.org Electronic version of the spectra (fichiers FITS)is only available in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/465/993

Identification of the Infrared Counterpart to a Newly Discovered X-Ray Source in the Galactic Center
We present first results of a campaign to find and identify new compactobjects in the Galactic center. Selecting candidates from a combinationof Chandra and 2MASS survey data, we search for accretion disksignatures via infrared spectroscopy. We have found the infraredcounterpart to the Chandra source CXO J174536.1-285638, the spectrum ofwhich has strong Brγ and He I emission. The presence of C III, NIII, and He II indicate a binary system. We suspect that the system issome form of high-mass binary system, either a high-mass X-ray binary ora colliding-wind binary.

Isolated, Massive Supergiants near the Galactic Center
We have carried out a pilot project to assess the feasibility of usingradio, infrared, and X-ray emission to identify young, massive starslocated between 1 and 25 pc from the Galactic center. We first comparedcatalogs compiled from the VLA, Chandra, and 2MASS. We identified twomassive, young stars: the previously identified star that is associatedwith the radio H II region H2 and a newly identified star that we referto as CXOGC J174516.1-290315. The infrared spectra of both stars exhibitvery strong Brγ and He I lines and resemble those of massivesupergiants that have evolved off of the main sequence but not yetreached the Wolf-Rayet phase. We estimate that each star has abolometric luminosity >~106 Lsolar. These twostars are also associated with bright mid-infrared sources from the MSXsurvey, although the origin of this emission is uncertain. Likewise, thedetection of these two sources in X-rays is surprising because stars atsimilar evolutionary states are not uniformly bright X-ray sources.Therefore, we suggest that both stars are in binary systems that containeither OB stars whose winds collide with those of the luminoussupergiants or compact objects that are accreting from the winds of thesupergiants. We also identify X-ray emission from a nitrogen-typeWolf-Rayet star and place upper limits on the X-ray luminosities ofthree more evolved, massive stars that previously have been identifiedbetween 1 and 25 pc from Sgr A*. Finally, we briefly discuss theimplications that future searches for young stars will have for ourunderstanding of the recent history of star formation near the Galacticcenter.

The Discordance of Mass-Loss Estimates for Galactic O-Type Stars
We have determined accurate values of the product of the mass-loss rateand the ion fraction of P+4, M˙q(P+4), for asample of 40 Galactic O-type stars by fitting stellar wind profiles toobservations of the P V resonance doublet obtained with FUSE, ORFEUSBEFS, and Copernicus. When P+4 is the dominant ion in thewind [i.e., 0.5<~q(P+4)<=1], M˙q(P+4)approximates the mass-loss rate to within a factor of <~2. Theorypredicts that P+4 is the dominant ion in the winds of O7-O9.7stars, although an empirical estimator suggests that the range O4-O7 maybe more appropriate. However, we find that the mass-loss rates obtainedfrom P V wind profiles are systematically smaller than those obtainedfrom fits to Hα emission profiles or radio free-free emission bymedian factors of ~130 (if P+4 is dominant between O7 andO9.7) or ~20 (if P+4 is dominant between O4 and O7). Thesediscordant measurements can be reconciled if the winds of O stars in therelevant temperature range are strongly clumped on small spatial scales.We use a simplified two-component model to investigate the volumefilling factors of the denser regions. This clumping implies thatmass-loss rates determined from ``ρ2'' diagnostics havebeen systematically overestimated by factors of 10 or more, at least fora subset of O stars. Reductions in the mass-loss rates of this size haveimportant implications for the evolution of massive stars andquantitative estimates of the feedback that hot-star winds provide totheir interstellar environments.

Evolution of X-ray emission from young massive star clusters
The evolution of X-ray emission from young massive star clusters ismodelled, taking into account the emission from the stars as well asfrom the cluster wind. It is shown that the level and character of thesoft (0.2-10 keV) X-ray emission change drastically with cluster age andare tightly linked with stellar evolution. Using the modern X-rayobservations of massive stars, we show that the correlation betweenbolometric and X-ray luminosity known for single O stars also holds forO+O and (Wolf-Rayet) WR+O binaries. The diffuse emission originates fromthe cluster wind heated by the kinetic energy of stellar winds andsupernova explosions. To model the evolution of the cluster wind, themass and energy yields from a population synthesis are used as input toa hydrodynamic model. It is shown that in a very young cluster theemission from the cluster wind is low. When the cluster evolves, WRstars are formed. Their strong stellar winds power an increasing X-rayemission of the cluster wind. Subsequent supernova explosions pump thelevel of diffuse emission even higher. Clusters at this evolutionarystage may have no X-ray-bright stellar point sources, but a relativelyhigh level of diffuse emission. A supernova remnant may become adominant X-ray source, but only for a short time interval of a fewthousand years. We retrieve and analyse Chandra and XMM-Newtonobservations of six massive star clusters located in the LargeMagellanic Cloud (LMC). Our model reproduces the observed diffuse andpoint-source emission from these LMC clusters, as well as from theGalactic clusters Arches, Quintuplet and NGC 3603.

Correlation patterns between 11 diffuse interstellar bands and ultraviolet extinction
We relate the equivalent widths of 11 diffuse interstellar bands,measured in the spectra of 49 stars, to different colour excesses in theultraviolet. We find that most of the observed bands correlatepositively with the extinction in the neighbourhood of the2175-Åbump. Correlation with colour excesses in other parts of theextinction curve is more variable from one diffuse interstellar band toanother; we find that some diffuse bands (5797, 5850 and 6376 Å)correlate positively with the overall slope of the extinction curve,while others (5780 and 6284 Å) exhibit negative correlation. Wediscuss the implications of these results on the links between thediffuse interstellar band carriers and the properties of theinterstellar grains.

Inferring hot-star-wind acceleration from Line Profile Variability
The migration of profile sub-peaks identified in time-monitored opticalemission lines of Wolf-Rayet (WR) star spectra provides a directdiagnostic of the dynamics of their stellar winds via a measured ΔvLOS/Δ t, a line-of-sight velocity change per unittime. Inferring the associated wind acceleration scale from such anapparent acceleration then relies on the adopted intrinsic velocity ofthe wind material at the origin of this variable pattern. Such acharacterization of the Line Emission Region (LER) is in principlesubject to inaccuracies arising from line optical depth effects andturbulence broadening. In this paper, we develop tools to quantify sucheffects and then apply these to reanalyze the LER properties oftime-monitored WR stars. We find that most program lines can be fittedwell with a pure optically thin formation mechanism, that the observedline-broadening is dominated by the finite velocity extent of the LER,and that the level of turbulence inferred through Line ProfileVariability (lpv) has only a minor broadening effect in the overallprofile. Our new estimates of LER velocity centroids are systematicallyshifted outwards closer to terminal velocity compared to previousdeterminations, now suggesting WR-wind acceleration length scales βR* of the order of 10-20 Rȯ, a factor of afew smaller than previously inferred. Based on radiation-hydrodynamicssimulations of the line-driven-instability mechanism, we computesynthetic lpv for Ciii5696 Å for WR 111. The results match wellthe measured observed migration of 20-30 m s-2, equivalent toβ R* ˜ 20 Rȯ. However, our modelstellar radius of 19 Rȯ, typical of an O-typesupergiant, is a factor 2-10 larger than generally expected for WR coreradii. Such small radii leave inferred acceleration scales to be moreextended than expected from dynamical models of line driving, whichtypically match a “beta” velocity lawv(r)=v&infy; (1-R*/r)β, withβ ≈ 1-2; but the severity of the discrepancy is substantiallyreduced compared to previous analyses. We conclude with a discussion ofhow using lines formed deeper in the wind would provide a strongerconstraint on the key wind dynamics in the peak acceleration region,while also potentially providing a diagnostic on the radial variation ofwind clumping, an issue that remains crucial for reliable determinationof O-star mass loss rates.

Kinematical Structure of Wolf-Rayet Winds. II. Internal Velocity Scatter in WN Stars
The shortward edge of the absorption core velocities - v_black asdetermined from low resolution archived IUE spectra from the INESdatabase are presented for three P Cyg profiles of NV 1240, HeII 1640and NIV 1720 for 51 Galactic and 64 LMC Wolf-Rayet stars of the WNsubtype. These data, together with v_black of CIV 1550 line presented inNiedzielski and Skorzynski (2002) are discussed. Evidences are presentedthat v_black of CIV 1550 rarely displays the largest wind velocity amongthe four lines studied in detail and therefore its application as anestimator of the terminal wind velocity in WN stars is questioned. Anaverage v_black of several lines is suggested instead but it is pointedout that v_black of HeII 1640 usually reveals the highest observablewind velocity in Galactic and LMC WN stars. It is shown that thestratification strength decreases from WNL to WNE stars and that for WNLstars there exists a positive relation between v_black and theIonization Potential. The velocity scatter between v_black obtained fromdifferent UV lines is found to correlate well with the X-ray luminosityof single WN stars (correlation coefficient R=0.82 for the data obtainedfrom the high resolution IUE spectra) and therefore two clumpy windmodels of single WN stars are presented that allow the velocity scatterto persist up to very large distances from the stellar surface (r approx500-1000 R_*). These models are used to explain the specific features ofsingle WN stars like broad absorption troughs of strong lines havingdifferent v_black, X-ray fluxes, IR/radio continua and stratificationrelations.

On the Hipparcos parallaxes of O stars
We compare the absolute visual magnitude of the majority of bright Ostars in the sky as predicted from their spectral type with the absolutemagnitude calculated from their apparent magnitude and the Hipparcosparallax. We find that many stars appear to be much fainter thanexpected, up to five magnitudes. We find no evidence for a correlationbetween magnitude differences and the stellar rotational velocity assuggested for OB stars by Lamers et al. (1997, A&A, 325, L25), whosesmall sample of stars is partly included in ours. Instead, by means of asimulation we show how these differences arise naturally from the largedistances at which O stars are located, and the level of precision ofthe parallax measurements achieved by Hipparcos. Straightforwardlyderiving a distance from the Hipparcos parallax yields reliable resultsfor one or two O stars only. We discuss several types of bias reportedin the literature in connection with parallax samples (Lutz-Kelker,Malmquist) and investigate how they affect the O star sample. Inaddition, we test three absolute magnitude calibrations from theliterature (Schmidt-Kaler et al. 1982, Landolt-Börnstein; Howarth& Prinja 1989, ApJS, 69, 527; Vacca et al. 1996, ApJ, 460, 914) andfind that they are consistent with the Hipparcos measurements. AlthoughO stars conform nicely to the simulation, we notice that some B stars inthe sample of \citeauthor{La97} have a magnitude difference larger thanexpected.

A Very Large Array 3.6 Centimeter Continuum Survey of Galactic Wolf-Rayet Stars
We report the results of a survey of radio continuum emission ofGalactic Wolf-Rayet (WR) stars north of δ=-46°. Theobservations were obtained at 8.46 GHz (3.6 cm) using the Very LargeArray, with an angular resolution of ~6"×9" and typical rms noiseof ~0.04 mJy beam-1. Our survey of 34 WR stars resulted in 15definite and five probable detections, 13 of these for the first time atradio wavelengths. All detections are unresolved (θ<~5"). Timevariations in flux are confirmed in the cases of WR 98a, 104, 105, and125. WR 79a and WR 89 are also variable in flux, and we suspect they arealso nonthermal emitters. Thus, of our sample 20%-30% of the detectedstars are nonthermal emitters. Average mass-loss rate determinationsobtained excluding definite and suspected nonthermal cases give similarvalues for WN (all subtypes) and WC5-7 stars[M(WN)=(4+/-3)×10-5 Msolar yr-1and M(WC5-7)=(4+/-2)×10-5 Msolaryr-1], while a lower value was obtained for WC8-9 stars[M(WC8-9)=(2+/-1)×10-5 Msolaryr-1]. Uncertainties in stellar distances largely contributeto the observed scatter in mass-loss rates. Upper limits to themass-loss rates were obtained in cases of undetected sources and forsources that probably show additional nonthermal emission.

Classification of Spectra from the Infrared Space Observatory PHT-S Database
We have classified over 1500 infrared spectra obtained with the PHT-Sspectrometer aboard the Infrared Space Observatory according to thesystem developed for the Short Wavelength Spectrometer (SWS) spectra byKraemer et al. The majority of these spectra contribute to subclassesthat are either underrepresented in the SWS spectral database or containsources that are too faint, such as M dwarfs, to have been observed byeither the SWS or the Infrared Astronomical Satellite Low ResolutionSpectrometer. There is strong overall agreement about the chemistry ofobjects observed with both instruments. Discrepancies can usually betraced to the different wavelength ranges and sensitivities of theinstruments. Finally, a large subset of the observations (~=250 spectra)exhibit a featureless, red continuum that is consistent with emissionfrom zodiacal dust and suggest directions for further analysis of thisserendipitous measurement of the zodiacal background.Based on observations with the Infrared Space Observatory (ISO), aEuropean Space Agency (ESA) project with instruments funded by ESAMember States (especially the Principle Investigator countries: France,Germany, Netherlands, and United Kingdom) and with the participation ofthe Institute of Space and Astronautical Science (ISAS) and the NationalAeronautics and Space Administration (NASA).

A Galactic O Star Catalog
We have produced a catalog of 378 Galactic O stars with accuratespectral classifications that is complete for V<8 but includes manyfainter stars. The catalog provides cross-identifications with othersources; coordinates (obtained in most cases from Tycho-2 data);astrometric distances for 24 of the nearest stars; optical (Tycho-2,Johnson, and Strömgren) and NIR photometry; group membership,runaway character, and multiplicity information; and a Web-based versionwith links to on-line services.

Observational studies of wind and photospheric variability in three early-type stars
Not Available

Toward an adequate method to isolate spectroscopic families of diffuse interstellar bands
We divide some of the observed diffuse interstellar bands (DIBs) intofamilies that appear to have the spectral structure of single species.Three different methods are applied to separate such families, exploringthe best approach for future investigations of this type. Starting witha statistical treatment of the data, we found that statistical methodsby themselves give insufficient results. Two other methods of dataanalysis (`averaging equivalent widths' and `investigating the figureswith arranged spectrograms') were found to be more useful as tools forfinding the spectroscopic families of DIBs. On the basis of thesemethods, we suggest some candidates as `relatives' of 5780- and5797-Å bands.

Radio continuum observations of massive stars in open cluster NGC 6231 and the Sco OB1 association
We present results of the Australia Telescope Compact Array (ATCA) radiocontinuum observations of massive stars in the Sco OB1 association. Most stars detected in the program show spectral indices lower thanvalue expected from thermal free-free emission.

The total-to-selective extinction ratio determined from near IR photometry of OB stars
The paper presents an extensive list of the total to selectiveextinction ratios R calculated from the infrared magnitudes of 597 O andB stars using the extrapolation method. The IR magnitudes of these starswere taken from the literature. The IR colour excesses are determinedwith the aid of "artificial standards" - Wegner (1994). The individualand mean values of total to selective extinction ratios R differ in mostcases from the average value R=3.10 +/-0.05 - Wegner (1993) in differentOB associations. The relation between total to selective extinctionratios R determined in this paper and those calculated using the "methodof variable extinction" and the Cardelli et al. (1989) formulae isdiscussed. The R values presented in this paper can be used to determineindividual absolute magnitudes of reddened OB stars with knowntrigonometric parallaxes.

Spectropolarimetry of O supergiants
We present medium-resolution spectropolarimetry at high signal-to-noiseratio of the Hα emission line of 20 O-type supergiants. Five stars(25 per cent) of the sample show a statistically significant change inpolarization through the line. We combine our Hα data with newK-band spectropolarimetry and archival low-resolution opticalspectropolarimetry to determine the polarigenic mechanism in the starsthat show a line effect. We show that the line polarization change inthe binary systems is caused by the classical `dilution' mechanism, inwhich the Hα emission is essentially unpolarized and the continuumpolarization is caused by intrabinary scattering. We find that the lineeffect in HD 108 is also well modelled by pure dilution, but suggestthat the continuum polarization is the result of stochastic windclumping. A similar description applies to the continuum polarization ofHD 188001, although the line effect cannot be reproduced by puredilution. We use low-resolution spectropolarimetry to determine theinterstellar polarization vector to λ Cephei, and confirm thatthe intrinsic polarization of the object is very low (<0.1 per cent,corresponding to an equator:pole density ratio of <1.25). The linepolarization of this star is modelled using the TORUS three-dimensionalradiative-transfer code. We show that the line effect is a consequenceof symmetry breaking caused by the rapid rotation of the system (>200km s-1), and that the system is similar polarimetrically tothe O4 supergiant ζ Puppis. Finally, we note that the precision ofcurrent photo- and spectro-polarimetric observations is insufficient totest structured wind models, which predict a continuum polarization of~0.1 per cent.

An explanation for the curious mass loss history of massive stars: From OB stars, through Luminous Blue Variables to Wolf-Rayet stars
The stellar winds of massive stars show large changes in mass-loss ratesand terminal velocities during their evolution from O-star through theLuminous Blue Variable phase to the Wolf-Rayet phase. The luminosityremains approximately unchanged during these phases. These large changesin wind properties are explained in the context of the radiation drivenwind theory, of which we consider four different models. They are due tothe evolutionary changes in radius, gravity and surface composition andto the change from optically thin (in continuum) line driven winds tooptically thick radiation driven winds.

The ISO-SWS post-helium atlas of near-infrared stellar spectra
We present an atlas of near-infrared spectra (2.36 mu m-4.1 mu m) of ~300 stars at moderate resolution (lambda /delta lambda ~ 1500-2000). Thespectra were recorded using the Short-Wavelength Spectrometer aboard theInfrared Space Observatory (ISO-SWS). The bulk of the observations wereperformed during a dedicated observation campaign after the liquidhelium depletion of the ISO satellite, the so-called post-heliumprogramme. This programme was aimed at extending the MK-classificationto the near-infrared. Therefore the programme covers a large range ofspectral types and luminosity classes. The 2.36 mu m-4.05 mu m region isa valuable spectral probe for both hot and cool stars. H I lines(Bracket, Pfund and Humphreys series), He I and He II lines, atomiclines and molecular lines (CO, H2O, NH, OH, SiO, HCN,C2H2, ...) are sensitive to temperature, gravityand/or the nature of the outer layers of the stellar atmosphere(outflows, hot circumstellar discs, etc.). Another objective of theprogramme was to construct a homogeneous dataset of near-infraredstellar spectra that can be used for population synthesis studies ofgalaxies. At near-infrared wavelengths these objects emit the integratedlight of all stars in the system. In this paper we present the datasetof post-helium spectra completed with observations obtained during thenominal operations of the ISO-SWS. We discuss the calibration of the SWSdata obtained after the liquid helium boil-off and the data reduction.We also give a first qualitative overview of how the spectral featuresin this wavelength range change with spectral type. The dataset isscrutinised in two papers on the quantitative classification ofnear-infrared spectra of early-type stars ({Lenorzer} et al.\cite{lenorzer:2002a}) and late-type stars (Vandenbussche et al., inprep). Based on observations with ISO, an ESA project with instrumentsfunded by ESA Members States (especially the PI countries France,Germany, the Netherlands and the United Kingdom) and with theparticipation of ISAS and NASA. The full atlas is available inelectronic form at www.edpsciences.org Table 1 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/390/1033

Kinematical Structure of Wolf-Rayet Winds. I.Terminal Wind Velocity
New terminal wind velocities for 164 Wolf-Rayet stars (from the Galaxyand LMC) based on PCyg profiles of lambda1550 CIV resonance line werederived from the archive high and low resolution IUE spectra availableform the INES database. The high resolution data on 59 WR stars (39 fromthe Galaxy and 20 from LMC) were used to calibrate the empiricalrelation lambda_min^Abs- lambda_peak^Emis vs terminal wind velocity,which was then used for determinations of the terminal wind velocitiesfrom the low resolution IUE data. We almost doubled the previous mostextended sample of such measurements. Our new measurements, based onhigh resolution data, are precise within 5-7%. Measurements, based onthe low resolution spectra have the formal errors of approx 40-60%. Acomparison of the present results with other determinations suggestshigher precision of approx 20%. We found that the terminal windvelocities for the Galactic WC and WN stars correlate with the WRspectral subtype. We also found that the LMC WN stars have winds slowerthan their Galactic counterparts, up to two times in the case of the WNEstars. No influence of binarity on terminal wind velocities was found.Our extended set of measurements allowed us to test application of theradiation driven wind theory to the WR stars. We found that, contrary toOB stars, terminal wind velocities of the WR stars correlate only weaklywith stellar temperature. We also note that the terminal to escapevelocity ratio for the WR stars is relatively low: 2.55 pm 1.14 for theGalactic WN stars and 1.78 pm 0.70 for the Galactic WCs. This ratiodecreases with temperature of WR stars, contrary to what is observed inthe case of OB stars. The presented results show complex influence ofchemical composition on the WR winds driving mechanism efficiency. Ourkinematical data on WR winds suggest evolutionary sequence: WNL -->WNE --> WCE --> WCL.

Gas—Dust Shells around Some Early-Type Stars with an IR Excess (of Emission)
The results of an investigation of IR (IRAS) observations of 58O—B—A—F stars of different luminosity classes, whichare mainly members of various associations, are presented. The colorindices of these stars are determined and two-color diagrams areconstructed. The emission excesses at 12 and 25 mm (E 12 and E 25) arealso compared with the absorption A1640 of UV radiation. It is concludedthat 24 stars (of the 58 investigated) are disk systems of the Vegatype, to which Vega = N 53 also belongs. Eight known stars of the Vegatype are also given in the figures for comparison. The remaining 34stars may have gas—dust shells and/or shell—disks. The IRemission excesses of the 34 investigated stars and 11 comparison stars(eight of them are Be-Ae stars) are evidently due both to thermalemission from grains and to the emission from free—freetransitions of electrons in the gas—dust shells of these stars.

Far-ultraviolet extinction and diffuse interstellar bands
We relate the equivalent widths of the major diffuse interstellar bands(DIBs) near 5797 and 5780Å with different colour excesses,normalized by E(B-V), which characterize the growth of interstellarextinction in different wavelength ranges. It is demonstrated that thetwo DIBs correlate best with different parts of the extinction curve,and the ratio of these diffuse bands is best correlated with thefar-ultraviolet (UV) rise. A number of peculiar lines of sight are alsofound, indicating that the carriers of some DIBs and the far-UVextinction can be separated in certain environments, e.g. towards thePer OB2 association.

A Search for Wolf-Rayet Stars in the Small Magellanic Cloud
We report on a comprehensive search for Wolf-Rayet (W-R) stars in theSMC using interference filter imaging. Photometry of over 1.6 millionstellar images on multiple, overlapping fields covering 9.6deg2 found the previously known W-R stars at very highsignificance levels, two known Of-type stars, plus additionalcandidates, which we examined with slit spectroscopy. We discovered twonew Wolf-Rayet stars, both of type ``WN3+abs,'' bringing the totalnumber in the SMC to 11. We discuss their spectra, as well asreclassifying the previously known ones with our new data. Our surveyalso revealed four newly found Of-type stars, including one of the O5f?ptype, which is one of the earliest type stars known in the SMC. Anothernewly identified Of star is AV 398 (O8.5 If), a star often used inextinction studies under the assumption that it is of early B type. Werecover S18 (AV 154), a B[e] star whose spectrum currently lacks He IIλ4686 emission but which must have had strong emission a yearearlier; we compare this star to S Dor, suggesting that it is indeed aluminous blue variable. We also find a previously unknown symbiotic starwhose spectrum is nearly identical to the Galactic symbiotic AG Dra.More important, perhaps, than any of these discoveries is thedemonstration that there is not a significant number of W-R starswaiting to be discovered in the SMC. The number of W-R stars is a factorof 3 times lower in the SMC (per unit luminosity) than in the LMC. Thisstrongly suggests that at the low metallicity that characterizes the SMConly the most massive stars can evolve to W-R type.

The origin of the runaway high-mass X-ray binary HD 153919/4U1700-37
Based on its Hipparcos proper motion, we propose that the high-massX-ray binary HD 153919/4U1700-37 originates in the OB association ScoOB1. At a distance of 1.9 kpc the space velocity of 4U1700-37 withrespect to Sco OB1 is 75 km s-1. This runaway velocityindicates that the progenitor of the compact X-ray source lost about 7Msun during the (assumed symmetric) supernova explosion. Thesystem's kinematical age is about 2 +/- 0.5 million years which marksthe date of the supernova explosion forming the compact object. Thepresent age of Sco OB1 is la 8 Myr; its suggested core, NGC 6231, seemsto be somewhat younger ( ~ 5 Myr). If HD 153919/4U1700-37 was born as amember of Sco OB1, this implies that the initially most massive star inthe system terminated its evolution within la 6 million years,corresponding to an initial mass ga 30 Msun. With theseparameters the evolution of the binary system can be constrained. Basedon data obtained with ESA's astrometric satellite Hipparcos.

Extended optical spectroscopic monitoring of wind structure in HD 152408
New perspectives are provided on significant spatial structure andtemporal variability in the near-star wind regions (i.e. < 3 R_star )of the massive luminous star HD 152408 (classified as O8:Iafpe orWN9ha). This study is primarily based on the analysis of high-qualityéchelle spectra secured during 21 nights between 1999 July toAugust, using the Landessternwarte-developed (fibre-fed) FEROSinstrument on the ESO 1.52-m telescope. These extended time-series data,with a total simultaneous wavelength coverage of lambda lambda3600 -9200Å, were exploited to monitor absorption and emission fluctuations(of ~ 5-10% of the line flux) in several He i and Balmer lines, togetherwith more deep-seated (near-photosphere) disturbances in weaker metallicemission and absorption lines. Organised large-scale wind structure inHD 152408 is principally betrayed by sequential episodes of discreteabsorption and emission features, which migrate from near zero velocityto almost the wind terminal velocity. This evolution is extremely slow,however, typically spanning ~ 4 days for an individual episode. Wedemonstrate that the blue-shifted sorption episodes in He i are veryclosely mirrored (in velocity and time) by absorption features (i.e.reduced not enhanced flux) in the blue wings of the mainly recombinationformed broad Hα emission line. The implication is that there isdetailed balancing between ground state photoionization andrecombination in the substantially optically thick Balmer lines.Surprisingly, the velocity behaviour of the red-ward and blue-wardmigrating features is highly asymmetric, such that the mean accelerationof the former is less than 50% of the latter. Fourier analysis reveals amodulation time-scale for the wind activity of ~ 7.7 days, plus itsharmonic at 3.9 days. The longer period is ~ 28 times greater than thecharacteristic radial wind flow time of HD 152408. We also detect a ~1.5 day periodic variation in the radial velocity of the weak C ivlambda lambda 5801, 5812 absorption lines, which are the closestapproximation to ``pure'' photospheric lines in the optical spectrum ofHD 152408. The wind-formed optical lines of HD 152408 are also affectedby fluctuations in the central peak emission, particularly evident inHα where the equivalent width may vary by up to 20%. Data securedbetween 1995 and 1999 reveal, however, that the epoch-to-epoch meanprofiles are remarkably similar. Non-LTE steady-state stellar atmospheremodels are used to synthesis profiles to match representative Hαand He i lambda 5876 line profiles. Only a slow (tailored) velocity law(compared to beta =1) provides a good match to the Hα emissionpeak and wings, but the models predict excess He i absorption. Theobserved extreme Hα emission variations can be reproduced by thesynthetic profiles with an implied +/-10% variation in mass-loss rate.The results on optical line profile variability in HD 152408 arediscussed in the context of models for co-rotating interaction regions(CIRs) in the wind. Several constraints are provided that argue againstsimple velocity fields in such streams, including (i) the slowacceleration of features to high velocities, within ~ 3 R_star , (ii)the strong asymmetry in projected acceleration of the approaching andreceding stream material, (iii) Balmer line absorption effects in theapproaching material, (iv) the rise of localised features from very lowvelocities, and (v) the stability of the large-scale CIRs againstturbulent small-scale wind structure. We suggest that it may be worthexploring hydrodynamic simulations of CIRs that incorporate differentvelocity fields on the leading (faster accelerating; blue-wardabsorption) and trailing (slower accelerating; red-ward emission) edgesof the spiral structures. Based on observations collected at theEuropean Southern Observatory, Chile (ESO 63.H--0080(A)).

The VIIth catalogue of galactic Wolf-Rayet stars
The VIIth catalogue of galactic PopulationI Wolf-Rayet stars providesimproved coordinates, spectral types and /bv photometry of known WRstars and adds 71 new WR stars to the previous WR catalogue. This censusof galactic WR stars reaches 227 stars, comprising 127 WN stars, 87 WCstars, 10 WN/WC stars and 3 WO stars. This includes 15 WNL and 11 WCLstars within 30 pc of the Galactic Center. We compile and discuss WRspectral classification, variability, periodicity, binarity, terminalwind velocities, correlation with open clusters and OB associations, andcorrelation with Hi bubbles, Hii regions and ring nebulae. Intrinsiccolours and absolute visual magnitudes per subtype are re-assessed for are-determination of optical photometric distances and galacticdistribution of WR stars. In the solar neighbourhood we find projectedon the galactic plane a surface density of 3.3 WR stars perkpc2, with a WC/WN number ratio of 1.5, and a WR binaryfrequency (including probable binaries) of 39%. The galactocentricdistance (RWR) distribution per subtype shows RWRincreasing with decreasing WR subtype, both for the WN and WC subtypes.This RWR distribution allows for the possibility ofWNE-->WCE and WNL-->WCL subtype evolution.

The OB Zoo: A Digital Atlas of Peculiar Spectra
A digital atlas of 20 high-luminosity, peculiar OB spectra in the3800-4900 Å range is presented. The atlas is organized anddiscussed in terms of the following four categories: WN-A or WNL stars,OB Iape or very late WN (WNVL) stars, iron stars, and B-supergiantluminous blue variables (LBVs). Several objects in the earliercategories are also active or quiescent LBVs. Some (but not all) ofthese objects have been well studied, and extensive references areprovided, as are comprehensive spectral-line identifications. Severalnew morphological relationships among the objects have been recognizedthrough this presentation. In particular, attention is drawn to theoccurrence of spatial pairing between nearly identical, unusual spectra,which may have implications for a particular mode of massive-starformation. This small sample includes one or both members of at leastfive such pairs. Physical explanations of these peculiar, likelytransitional spectra and the relationships among them are essential fora complete understanding of massive stellar evolution.

On the relation between diffuse interstellar bands and simple molecular species
We present observations of the major diffuse interstellar bands (DIBs)at 5780 and 5797 Ä as well as literature data and our ownobservations of the violet lines of CH and CH(+) , in the lines of sighttoward some 70 stars representing various degrees of the interstellarreddening. The correlations are shown and discussed in the context ofindicators such as far-UV extinction parameters and neutral molecularabundances. The results show that the DIBs in question (lambda lambda5797 and 5780) both probably form in diffuse cloud interiors, in arelated regime where CH and H_2 form. The ratio of the two DIBscorrelates with CH abundance, confirming that the lambda 5797 carrier isfavoured in enhanced molecular gas regions over the lambda 5780 carrier.The ratio of the two DIBs correlates poorly with CH(+) abundance. Ourcompilation of observational data also suggests that the DIB ratio maybe equally useful as a cloud type indicator as is R_V, the ratio oftotal to selective extinction, and much more readily observed. Based onobservations obtained at the Russian Special Astrophysical Observatory(SAO), Terskol Observatory (TER), Canada France Hawaii Telescope (CFHT),European Southern Observatory (ESO), Observatoire de Haute-Provence(OHP)

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Scorpion
Right ascension:16h54m58.50s
Declination:-41°09'03.1"
Apparent magnitude:5.812
Proper motion RA:-0.3
Proper motion Dec:-0.2
B-T magnitude:5.967
V-T magnitude:5.825

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 152408
TYCHO-2 2000TYC 7872-1609-1
USNO-A2.0USNO-A2 0450-25968059
HIPHIP 82775

→ Request more catalogs and designations from VizieR