Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 5580-760-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Distribution and Studies of the Infrared Stellar Population in the Galaxy. VI. The Halo
We present infrared J, H and K observations of 69 local galactic halostars. We produce the two colour (JHK) and the colour magnitude (Kversus (J-K)) diagrams for this stellar sample and compare them with thesame diagrams for the stellar populations in the globular clusters M3,M13, M92 and 47 Tucanae and in the old open cluster M67; we also comparethese diagrams with those for the stellar population in the galacticbulge.

Classification of Population II Stars in the Vilnius Photometric System. I. Methods
The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

Estimation of stellar metal abundance. I - Calibration of the CA II K index
A method for estimating the stellar metal abundances is proposed whichcompares measures of the equivalent width of a single feature inmoderate resolution (1 A) optical spectra of stars, the Ca II K line at3933 A, with models of the predicted line strength as a function of thebroadband B-V color and Fe/H. The approach is capable of providingestimates of stellar metallicity over the range -4.5 to -1.0 with ascatter of about 0.15 dex for dwarfs and giants in the color range0.33-0.85. For cooler stars, with B-V in the range 0.85-1.1, the scattermay be as large as 0.19 dex. The calibration of the Ca II K index withFe/H is discussed, and average radial velocities and abundances arepresented for several galactic globular clusters.

Armchair cartography - A map of the Galactic halo based on observations of local, metal-poor stars
The velocity distribution of metal-poor halo stars in the solarneighborhood is studied to extract data on the global spatial andkinematic properties of the Galactic stellar halo. A global model of thesolar neighborhood stars is constructed from observed positions andthree-dimensional velocity of local, metal-poor halo stars in terms of adiscrete sum of orbits. The characteristics of the reconstructed haloare examined and used to study the evolution of the halo subsystems.

An atlas of stellar spectra between 2.00 and 2.45 microns
Spectra between 2.00 and 2.45 microns, with a resolution of about 0.02micron are presented for a sample of 73 stars. These stars include asupergiant, giants, dwarfs and subdwarfs, and have a range in chemicalabundance from about -2 to +0.5 dex.

Determination of effective temperatures and surface gravities of metal-deficient K-G giants in the Vilnius photometric system
Not Available

Three-dimensional classification of 78 metal-deficient giants in the Vinius photometric system
Not Available

Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less
A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.

The kinematics of halo red giants
The present 337 radial velocities were obtained with typical accuraciesof 0.7 cm km/sec for 85 metal-poor field red giants, selected from thekinematically unbiased samples of Bond (1980) and Bidelman and MacConnel(1973). The multiply-observed stars suggest the field halo binaryfraction exceeds 10 percent. Using these velocities and those publishedby others, a sample of 174 red giants with Fe/H of not more than -1.5 isobtained. Their mean motion with respect to the local standard of restis -206 + or - 23 km/sec, and the velocity dispersions are sigma (R) of154 + or - 18 km/sec, sigma(theta) of 102 + or - 27 km/sec, andsigma(phi) of 107 + or - 15 km/sec. Using photometrically derivedabsolute magnitudes and published proper motions, orbital eccentricitiesare computed for 72 stars not already considered in a similar study ofsouthern stars by Norris et al. (1985). A few stars with e of less than0.4 are found.

Photoelectric photometry of metal-deficient giants of spectral types G and K in the Vilnius system
Not Available

Population studies. I - The Bidelman-MacConnell 'weak-metal' stars
BRVI and DDO photometry are presented for 309 Bidelman-MacConnell'weak-metal' stars. Radial velocities are calculated for most of thestars having Fe/H abundances of no more than -0.8. The photometricobservations were carried out using the 0.6-meter and 1.0-metertelescopes of the Siding Spring Observatory. Photometric taxonomy wasused to classify the stars as dwarfs, giants, red-horizontal branchstars, and ultraviolet-bright stars, respectively. It is found that 35percent of the stars are giants; 50 percent are dwarfs; and 5 percentbelong to the red-horizontal branch group. The role of selection effectsin investigations of the formation of the Galaxy is discussed on thebasis of the photometric observations and the observational constraintsproposed by Eggen et al. (1962).

Metal-Deficient Giants in the Galactic Field - Catalogue and Some Physical Parameters
Not Available

Southern subdwarf photometry
UBV photometry and normalized UV excesses are reported for 176 southernmetal-poor stars selected from the objective-prism survey of Bidelmanand MacConnell (1973) as well as 49 other metal-deficient starsidentified in other surveys. Photometry is also presented for 32 otherstars lying near the 225 program stars (although not explicitlyidentified as such in the text, the program stars are apparentlysubdwarfs and subdwarf candidates). Previously determined spectral typesand degrees of line weakening are given for the 225 stars, andmetallicities are estimated on the basis of the degrees of lineweakening. It is noted that 33 F and G stars with extreme meannormalized UV excesses of approximately 0.22 mag have a mean Fe/H valueof -1.4 and probably represent halo subdwarfs, while 82 F and G starswith moderate UV excesses are mostly old disk stars.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Balance
Right ascension:15h04m51.23s
Declination:-08°48'56.5"
Apparent magnitude:9.512
Proper motion RA:-29.3
Proper motion Dec:-5.4
B-T magnitude:10.654
V-T magnitude:9.607

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 5580-760-1
USNO-A2.0USNO-A2 0750-08776887
HIPHIP 73781

→ Request more catalogs and designations from VizieR